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Abstract

The cell lengths in linacs of conventional design are
typically graded as a function of particle velocity. Use of
symmetric cells in short segments of both the coupled-cavity
drift-tube linac (CCDTL) and coupled-cavity linac (CCL)
simplifies the cavity design. Mechanical design and
fabrication are also simpler without compromising the
performance. We have implemented a design algorithm in the
PARMILA code for symmetric cells and symmetric multiple-
cavity segments. This feature significantly reduces the
number of unique components. We have compared the
performance of a symmetric-segment linac with a more
conventional graded-cell-length linac.

Elements in a Symmetric Unit

Figure 1 defines a cell as an acceleration unit that
includes a single rf accelerating gap. A cavity contains one or
more accelerating cells and may be resonantly coupled to
other cavities.

CCDTL [1] cavities may contain two types of cells. One
type extends from the center of one drift tube to the center of
the next. The other type starts from the up-stream face of a
cavity and extends to the center of the first drift tube. The
reverse of this later type occurs in the last cell of a CCDTL
cavity. In a graded-β design, each cell in a CCDTL would
have a unique length and the resulting cavities would be
asymmetric. In a CCL, cells and cavities are synonymous and
are typically symmetric.

We define a symmetric unit or segment as a series of
coupled cavities all of which by themselves are symmetric
and all of which have identical geometry. In symmetric units
the rf fields in each cavity are equal. In the CCDTL, the field
amplitude in each cell may be different but is fixed relative to

the other cells within the cavity. In a symmetric unit,
symmetrically placed cells have equal fields.

Symmetric units may include space between cavities for
focusing elements. Symmetry does not constrain the
placement of the focusing elements. Ignoring the quadrupole
lenses, a symmetric unit is non-directional. It will perform
correctly with either end located up-stream. The quadrupoles
position is independent of the cavity position so long as it fits
within the space between the cavities.

Algorithm of Linac Design

In a graded-β linac design (β = relativistic particle
velocity) a synchronous particle determines the cell length by
requiring it to arrive at the center of the accelerating gap
when the rf fields are at the “synchronous” phase. Any phase
programming along the linac is folded into the increasing cell
lengths which are otherwise proportional to βλ. (λ = the rf
wavelength.) In PARMILA [2] the thin-lens approximation
determines the acceleration across a gap [3]. Longitudinally,
the Prome term [4] corrects the phase advance across the gap
ensuring that thin-lens approximation conserves emittance.

PARMILA divides the gap at its electrical center zc. In a
multiple-drift-tube CCDTL cavity, the fields in the end cells
are asymmetric and the geometrical and electrical centers do
not coincide. Therefore, we use the code CDTFISH [5] to
design the CCDTL cavities so that the electrical center of the
gap coincides with the center of the gap as defined by
PARMILA. The value of zc, can be found by satisfying the
equation:
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CDTFISH adjusts the length of the cavity noses until the
electric field integrals in equation (1) are equal for a given
value of zc. It does this while maintaining its resonant
frequency. For each geometrical velocity βg SUPERFISH [6]
then calculates the transit time factors and other relevant
cavity parameters. This procedure is now used by PARMILA
to determine the cell lengths of a graded-β linac. In principle,
a linac designed by a graded-β method accelerates slightly
more efficiently than one designed by the symmetric method.

To maintain an average phase synchronism over a
symmetric unit, PARMILA sets the entry phase to the
symmetric unit so that average phase equals the design phase.
The average phase is the phase, averaged over all gaps in the
symmetric unit, of the reference particle when it arrives at the
gap centers. In conventional graded-β designs, the reference
particle sees cells of increasing length. However, imposing
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Figure 1. Cell, cavity, and symmetric unit in a 1- and 2-drift-tube
CCDTL.



equal cell lengths, optimized near the mid section of the
symmetric unit, inevitably results in cells that are the
incorrect length at both ends of the symmetric unit. A
reference particle sees a longer cell length than preferred in
the earlier cells, and a shorter cell length in the later cells.
This results in a phase slip, shown in Fig. 2 through the
symmetric unit. We determine βg so that the reference
particle phase increases at successive gaps until the mid
section, then, decreases from above the design phase until the
end of a symmetric unit.
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Figure 2. PARMILA adjusts the symmetric unit length and the entry
phase until the design phase equals the average reference
particle phase.

Determining the Geometrical βg

In designing a symmetric linac, we define a “design
particle” and a “reference particle.” We no longer use a
“synchronous particle” that arrives at the center of cells at the
synchronous phase. The purpose of the loosely-defined design
particle is to keep track of the phase programming. The
design phase may not correspond to phase at any particular
gap for multiple-gap symmetric unit.

The reference particle is a sample particle that obeys the
particle dynamics. PARMILA chooses the length of the
symmetric unit such that all the phases seen by the reference
particle at the gap centers are close to the design phase. We
determine the geometrical velocity βg from the requirement
that the time required for the reference particle to traverse a
symmetric unit is equal to a time that should lapse to
maintain synchronism at both ends of the unit. We impose no
restrictions on the phase or energy of the particle at the gaps
within the unit. The total length of a symmetric unit must be
nsβgλ/2 (ns is an integer). The geometrically determined
velocity βg is constant over the symmetric unit. We have
investigated alternate approaches for determining βg such as
choosing its value corresponding to half the energy gain in
the segment, or to half the velocity gain in the segment.
These schemes were unsatisfactory, particularly when the
number of cells in a symmetric unit was small.

In our calculation of βg we include the Prome-phase
correction [4] as an extra time contribution in a gap
transformation. Previously PARMILA used this only in the
particle-dynamics portion of the calculation. The effect of a
positive Prome value is a reduction in the cell lengths. For

example, for the 2-drift-tube CCDTL in Fig. 1, The following
expression determines βg.
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where T is the rf period (λ/c). βji and βjo are the relativistic
velocities of entry to and exit from the gap j. Terms Pj

(j=1,2,3) are the  time delays derived from the Prome phase
corrections for each gap (Pj = λ/(2πc) ∗ (phase correction)j .)
With this correction, the cell lengths and the particle
dynamics through the symmetric unit become consistent. An
error the order of 0.1 degrees per cell accumulates during the
cell generation process when the Prome correction is
neglected.

After determining the symmetric-unit length, PARMILA
adjusts its longitudinal position so that the reference particle
arrives at the entrance to the symmetric unit at the correct
phase. The exit phase of the reference particle traversing a
symmetric unit differs from its entrance phase to the next
symmetric unit. Also the exit phase of a reference particle
through a symmetric unit does not necessarily equal its
entrance phase. PARMILA adjusts the entry phase to
minimize this phase difference using single particle dynamics
through each symmetric unit. After determining the entry
phase, the code calculates the length of the drift space
between the units to provide the exit to entry phase
difference. If the design requires a ramp in the phase,
adjusting the drift-space length provides the ramp. If
external-quadrupole magnets require additional space, it is
added in units of βλ/2 to maintain the correct reference
particle phasing.

If the linac design requires a ramp in the accelerating
field gradient, we step E0, the average axial electric field,
from unit to unit while maintaining E0.constant within the
unit. For a given ramp in E0, the value of βg is required to
calculate the needed value of E0. Therefore, we iterate about 5
cycles through each symmetric unit until the correct βg is
found for the E0 calculation.

The Entry Phase into a Symmetric Unit

The average phase of reference particle must bear some
relation with the design particle phase. Because the design
particle is simply a programmed phase angle, there are a
number of ways to approach this problem. Using a reference
particle that follows the correct beam dynamics, one can
constrain the entry and exit phases of the reference particle
through the symmetric unit to be equal. However, if the
number of cells in a symmetric unit is small (2 or 3), we often
encounter a difficulty. The extreme phases (phase at gap 1
through 4 in Fig. 2) do not bracket the design phase. Another
approach requires the equal phase angles at the center of first
and the last gap in the unit as seen by the reference particle.
This approach also suffers from the same problem.



We therefore require that the average of reference
particle phases at gap centers in a symmetric unit equal the
design phase. This approach ensures the extreme phases in
the symmetric unit bracket the design phase. The entry and
exit phases are not necessarily equal. In the PARMILA code,
we employ Brent’s zero-crossing technique [7] in
determining the entry phase angle. For each iteration, a
single particle is propagated through the symmetric unit. This
method converges quickly and accurately.

When the number of gaps becomes large in a symmetric
unit, βg is appreciably different from the actual particle β near
both ends of the segment. This situation requires a correction
in the transit time factors for the reference particle. We use
CDTFISH to design the cavity for specified βg. Then
SUPERFISH calculates the transit time factors (T, T′, S, S′,
etc.) assuming that the reference particle velocity β=βg. When
the reference particle β is not equal to βg, we expand the
transit time factors around βg with respect to the wave
number k (k is 2π/βλ). PARMILA uses this expansion in for
both the single-particle-dynamics calculations in the linac
design and in the multiple-particle simulation sections of the
code.

After determining the entry phase, PARMILA stores the
phases at the entrance, center and exit of each cell as well as
the energy at the exit of the unit. Normally, the exit phase of
one unit is not equal to the entry phase of next one. The
source of this can be partly a ramp in the phase, and partly
the phase slip through the multiple cells in the unit. Adding
extra space between units corrects this small phase
discontinuity. The PARMILA code generates one additional
symmetric unit beyond the end of linac. It uses this additional
unit to calculate the correct spacing between the end of this
section of linac and the next section if more follows. The
design of the next unit uses the exit energy of this unit as its
starting energy. The linac is designed by repeating this
process until the required energy is achieved. All of the
pertinent design information is stored in memory for the
multiple-particle beam-dynamics simulation.

In a more general CCDTL structure (see Fig. 1, CCDTL
with 2 drift tubes), the cell lengths within a cavity may differ
according to their position in the cavity. Multiple cavities that
are completely interchangeable may comprise symmetric
units. In a symmetric unit, if there are no external
quadrupoles between cavities, either end can be placed to the
beam up-stream. If there are multiple drifts within a
symmetric unit for quadrupoles, the unit may not be
reversible because the drift lengths may be different. Each
symmetrically designed unit has a unique βg and all of the
cell lengths within the segment are proportional to βgλ.

Example: Design of 2-Drift-Tube CCDTL

We designed a 2-drift-tube CCDTL that accelerates a
100-mA proton beam from 8 to 20 MeV in two ways; The
conventional graded-β approach and the symmetric unit
approach. Table 1 compares the two of designs at the end of
59 cavities.

Table 1.
CCDTL with 2 drift tubes: graded β and symmetric designs.

Length
(cm)

Energy
(MeV)

# of
cavities

#of
cells

Graded-β 1639.9 20.274 59 177
Symmetric 1637.9 20.215 59 177

These designs use a ramp in both the cavity field
amplitude and the synchronous phase: The cavity phase
varies from -54° to -40° and the field E0 varies from 1.56
MV/m to 2.26 MV/m. The two designs differ by 0.06 MeV
and about 2 cm in length.

Summary

The new version of PARMILA can design symmetric
cavities and symmetric linac sections. It does this for both
CCDTLs and CCLs. Then it calculates the beam dynamics
through the linac. The symmetric design process simplifies
the engineering and eases the fabrication. The difference in
performance of the graded β design and the symmetric design
of a CCDTL is small.
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