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Abstract

A bunched beam from an accelerator can excite and power
an rf cavity which then drives either a deflecting or focusing
(including nonlinear focusing) rf cavity with an amplitude
related to beam current.  Rf power, generated when a bunched
beam loses energy to an rf field when traversing an electric
field that opposes the particle's motion, is used to drive a
separate (or the same) cavity to either focus or deflect the
beam.  The deflected beam can be stopped by an aperture or
directed to a different area of a target depending on beam
current.  The beam-generated rf power can drive a radio-
frequency quadrupole that can change the focusing properties of
a beam channel as a function of beam current (space-charge-
force compensation or modifying the beam distribution on a
target).  An rf deflector can offset a beam to a downstream
sextupole, effectively producing a position-dependent
quadrupole field.  The combination of rf deflector plus
sextupole will produce a beam current dependent quadrupole-
focusing force.  A static quadrupole magnet plus another rf
deflector can place the beam back on the optic axis.  This
paper describes the concept, derives the appropriate equations
for system analysis, and gives examples.  A variation on this
theme is to use the wake field generated in an rf cavity to cause
growth in the beam emittance.  The beam current would then
be apertured by emittance defining slits.

Deflector System

Figure 1 shows the concept in a system designed to
aperture a high current beam.  The RF generator and deflector
are conceptually shown as two units.  The beam deflection
angle is proportional to the beam current.  This deflection
becomes a displacement at the beam collimator.  Permanent
magnet non-linear focusing magnets can enhance the operation
of the RF deflector.

Beam Interaction with an Rf Field

In this section, a differential equation describing the rf
field generated in a cavity excited by a bunched beam is derived
and solved.  This differential equation depends on the energy
deposited in the cavity by the beam and the energy lost in the
cavity due to resistive wall losses.  We consider a TM010
mode single-cell cavity (DTL type) where the electric field is
along the beam direction and is concentrated on the axis of the
cavity between the drift tube noses.
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Fig. 1.  RF Deflector Concept.

The bunched beam from the accelerator drives a cavity that
produces rf power which then drives a beam deflecting cavity.
The deflecting cavity could be followed by nonlinear magnets
and then phase-space defining apertures to remove the deflected
beam.

Work done against the rf electric field by particles
traversing the gap adds energy to the rf field.  This gain in the
field energy, ∆UP , due to one particle is

∆UP = eEg cos t +( )dz
−Z g 2

Zg 2

∫
(1)

where

z = vt ,   
v

=
2

, (2)

e is the charge on an electron, Zg is the gap length, Eg is the
gap voltage,  is 2π times the rf frequency,  is the velocity
of the particle with respect to the velocity of light,  is the
free space rf wavelength, v is the particle's velocity, t is time,
and  is the rf phase when a particle enters the gap.  

Assuming that the change in particle energy in crossing
the gap is small compared to the particle's kinetic energy and
treating v as a constant, Eq. (1) is integrated to obtain

∆UP = eE0T cos (3)
where, Eo  is an average field strength defined by

EgZg = E0  , (4)

and T is a transit time factor.  The transit time factor is defined
as*Work supported by the U.S. Department of Energy
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Equation (3) gives the energy gain in the rf electric field
due to one particle crossing the rf-gap.

Beam Bunch Rf Energy Gain

The individual charges in a beam bunch enter the rf-
cavity at different phases .  The phase distribution of the
particles is described by the function ( ).  The total charge
per beam bunch is

q = ( )d
−
∫  . (6)

Let,

  
∆UB =

average rf field power gain

beam bunch

be the energy deposited in the cavity by a complete beam
bunch, and use Eq. (3) to obtain

∆UB = E0T ( )cos
−
∫ ( )d  . (7)

The integral in Eq. (7) can be defined in terms of a
dimensionless charge-distribution form factor as

F =
1

q
( )cos

−
∫ ( )d  . (8)

The value of F is less than 1 (it is equal to 1 for a  function
distribution).  This form factor is rather insensitive to beam
bunch length.  For example, assume that ( ) is described by
the rectangular distribution

( ) =
q 2 0 − 0 < < 0

0 otherwise

 
 
 

 , (9)

where  is the phase extent of the distribution.  Then,

F = sin 0( ) 0  . (10)

When  = 0, F = 1, and when  = π/2 (severe debunching),

F = 0.64.  Equations (24) and (25) (derived below) show that
the maximum-generated electric field scales as F.  We see that
the rf-electric field is somewhat insensitive to significant beam
debunching.

Let UT equal the total rf field energy in the cavity.  The
rf electric field will scale as the square root of UT.  Combining
Eqs. (7) and (8) and defining the constant k1 as

k1 = E0 UT
1 2  (11)

gives

∆UB = qk1T FUT
1 2  . (12)

The constant k1 depends on the electric field distribution in the
cavity and is a function of the cavity geometry.  We will later
assume a model for the electric field distribution that will
permit a rough calculation of k1.

Resistive Wall Losses and Q

Equation (12) gives the rf field energy gain due to one
beam bunch crossing the rf-cavity gap against the rf electric
field.  There are power losses in the cavity due to the finite
resistance of the cavity walls.  This power loss can be
determined from the Q of the cavity defined as

Q = UT WL (13)

where WL is the average rf power loss per unit time.  The rf
energy loss in one rf cycle (time  = 2π/ ) is then

WL
2

=
UT

Q

2
 . (14)

RF Time Dependent Field Equation

The change in total rf power per time is

∆UT

∆t
=

∆UT

2
=

∆UB

2
−

WL 2

2
 .

Using Eqs. (12), and (13) gives

dUT

dt
≈

qk1T F

2
UT

1 2 −
Q

UT  . (15)

Equation (15) is easier to solve if Eo [from Eq. (11)] is
substituted for UT.  Equation (15) becomes

2
dE0

dt
=

qk1
2T F

2
−

Q
E0 . (16)

Assuming that the rf power is zero when t = 0, Eq. (16) can be
integrated to give

E0 =
Qqk1

2T F

2
1 − e− t 2Q( )  . (17)

The charge per beam bunch, q, can be calculated from the
instantaneous average beam current, I, and is

q = 2 I  . (18)

Substituting Eq. (18) into (17) gives

E0 = E0 max
1 − e− t 2Q( )  . (19)

where

E0max
=

QIk1
2T F

 . (20)



Relationship Between RF Electric Field and RF
Power

A crude estimate of k1 can be obtained by assuming that
most of the rf electric field is concentrated between the drift-
tube noses and is a constant.  The maximum stored energy in
the electric field can be calculated and related to UT to give k1.
The value of UT calculated from the electric field is

UT = 0

2
E2dV ≈∫ 0

2
Eg

2 Rg
2Zg  . (21)

Solving this equation for Eg and using Eq. (4) gives

E0 =
2Zg

0 Rg
2 2 2
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1 2  . (22)

Comparing Eqs. (11) and (22) gives

k1 =
2Zg

0 Rg
2 2 2
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 . (23)

Equation Summary

Combining Eqs. (4), (11), (13), (20) and (23) give

E0max
=

2QITFZg

0 Rg
2 =  max. average electric field, (24)

Egmax
=

2QITF

0 Rg
2 =  max. gap electric field, (25)

UT max
=

2Q2I 2T2 F2Zg
2

0 Rg
2 =  max. total rf energy, (26)

and

WLmax
=

2QI2T 2 F2Zg

0 Rg
2 =  max. rf power loss/ time. (27)

Examples

We calculate Egmax
 and WLmax

 using Eqs. (25) and (27)

for a 100 µA beam at 800 MeV.  Assume a 10% beam duty
factor, then I = 1.0 mA.  We let /2π =  200 MHz, Q=1000,

 = 1 deg, Z 
g  = 1.0 cm, and R  

g
  = 1.0 cm (εο = 10-9/36π).

Equations (25) and (27) give Egmax
  = 5.7x105 V/m (rf-gap

voltage) and WLmax
  = 5.7 watts (maximum power extracted

from the beam).
We calculate the beam deflection due to a transverse rf-

electric field.  From,

dP

dt
= eE cos t( ) , (28)

we obtain

∆P⊥ = eE cos t( )
− 0

0

∫ dt =
2eE sin 0 . (29)

The deflection angle

′ X = ∆P⊥ P// . (30)

For E = 0.57 MV/m, ο = π/2 (complete rf half cycle), 5

rf deflection cavities (each of length /2 = 0.68 m), and an

800 MeV beam, we find that X '  = 10-3 radians.  This will
produce a deflection of 1 cm in 10 meters.  Given this same

geometry, a 10 mA beam will have a deflection angle of 10-2

radians and will be deflected 10 cm.
There are issues to be addressed if this system is to be

used for limiting beam current for personnel safety.  These
include:  sensitivity of the rf cavities to detuning, possible
long term degradation in cavity Q due to oxidation of cavity
surfaces, determining the envelope of off-nominal linac
operational parameters that will cause the beam to sufficiently
debunch so that the rf deflection system will no longer work,
and rf cavity conditioning.
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