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Abstract

The partly built line of the ECR ion source Alice, mainly based
on electrostatic elements, needs several optimizationsfor differ-
ention beam (A/q rangesfrom 2to 9). Numerical codes easy to
maintain and fast to execute werein demand. Beam optics codes
are usually implemented as a kind of object oriented programs
followed by apurposely written high level interpreter. Thislevel
was herereplaced by general programs, combining symbolic and
numerical capability, which therefore support different program-
ming styles and a much finer physical description. Highly effi-
cient linear tracking of electrostatic elements was obtained com-
bining piecewise analytical solutionsfor quadratic and linear el-
ements; some basic formulas and a sample result for Alice line
are shown. Extension of elementsto nonlinear caseisgiven here,
with detail for the anode lens.

Introduction

The beam transport system of the ECR [1] ion source Alice
ismainly constituted by electrostatic elements (extractor, three
einzel lens and the accelerating column), with one magnetic
dipole for charge selection (Fig. 1). Due to the relative impor-
tance of fringing fields, our need for aflexible and easily adapt-
able matrix tracking code was apparent; nonlinear effects were
also considered a second goal. We wrote some application pro-
grams, executed (interactively) by Mathematica[2]. Usual for-
mulas for sources, drifts, thin lens and dipoles were easily im-
plemented, aswell as graphic capabilities. This paper describes
the nontrivial approximations and equationsthat we used in sim-
ulating round electrostatic elements in some detail.

Paraxial analysis of einzel lens was indeed possible, by de-
composing thelensin seven regions (or elements), wherethe ax-
ia field F, is assumed either constant (linear elements) or lin-
early increasing (quadratic elements) [3]. Use of morethan three
regions alows a closer fit to actual fields. A noteworthy non-
linear approximation (nonlinear means applicable to nonparax-
ia rays), namely the Piecewise Quadratic Approximation (PQA)
isfirst introduced and briefly discussed; matching between lin-
ear and quadratic element is extended off-axis, allowing region
boundaries to make aarctgy/2 angle with z axis and introducing
fictitious charges on element boundaries. We apply this general
concept to anode lens effect.

We follow SI units in the code (generally) and use nonrela-
tivistic mechanics, as suitable for ion sources. Since orbits do
not depend on mass and charge in electrostatic fields, in section
2 and 3 we set unit mass and charge e = m = 1 for brevity.
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Figure1: Beamlinefrom platform (scaleisapproximated; trans-
verse dimension exaggerated).

Einzel Lens Paraxial Model

Let F bethetotal particle energy, aconstant of motion, valid for
every element of our beamline. First, we review the quadratic
element. Consider a vacuum region where the electrostatic po-
tential ¢(r, z) isexactly:
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Hamiltonian separatesas H = H, + H, with H, = (2p? +
Cr?)/4 ,whosevalue H¢ isaconstant of motion; also the value
of H, isthe constant of motion HS = E — HS . Solving motion
equations and eliminating ¢ in favour of =z we write the motion
from z; to z, as
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with2H¢ = 2E — p?(z;) — Cr?(z;)/2 . From these nonlinear
formulasalinear approximationin (r, p,.) isobtained by putting
H¢ = FEineg. (3). Incase C' < 0 analytic continuation istaken.
Case C' = 0 isthelinear element.

The potential of einzel lens ®(r, z) can be fitted by elements
like eg. (1) onintervals of z axisr = 0; interval borders z,
are called breaking points here. In present code, we find con-
venient to use the well-known approximation for symmetrical
einzel lenses[3] :
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with w = 1.318/R where R is the radius of electrodes and

z = z4, 2 = 2z their faces; in perspective, also the potential



®(0, z) numericaly computed (by POISSON) and adequately
interpolated can be fitted by the same elements.

Elements are easily counted by plotting (see Fig. 2a) the sec-
ond derivative ¢ .. and associating a C' > 0 element to some
maximum (region I11) and aC' < 0 element to some minimum
(region 1) or low plateau. Between these elements, aC' = 0 ele-
ment (region I1) will certainly improve matching. At z = 0 we
canincludeaC = B = 0 element (region 0) or not, depend-
ing on lens dimension z,. In these regions, potential elements
on axis are better written:

o= a 0<z2<2
o= a+ %b(z—z0)2 20 < z< 21 ®)
o= c+d(z—2) 21 <2< 2

= %6(2—23)2 20 <2< 23

and ¢ = 0forz > z3. Imposing continuity of ¢(0, z) and

¢.-(0, z) everywhere, weget c = a — 3d(z1 — 20), e = d/ (22 —
zg)and zz3 = —2(a/d) + 2o + 21 — 22 .
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Figure 2: @) Breaking point determination from potential deriva-
tiveson z axis; 2b) Regions at a breaking point.

We choose a = ®(0, 0) to exactly reproduce the field at lens
middle . The remaining parameter zg, 21, 2o (breaking points)
and d can be determined by fitting ¢ to the actual potential ®,
that is by minimizing the norm
®..)° (6)
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where 2\9) = j(L/N) and L islong enough (L = z, + 3R
suffices). Considering also the second derivative is essential for
sound results of thefit, even if weights wg, w; and wy # 0 may
bevaried; wechoosew,, = R™. Notethat zo < 0isour criterion
to drop region O, which case leavesfive intervalsin total instead
of seven.

In the paraxial approximation we can take region boundaries
asz = z, planes, and extend potential off-axis according to (1).
Indeed, at any z,, ¢ .. is discontinuous, so that ar? disconti-
nuity in potential arise; this term may be neglected in paraxial
approximation.

Piecewise Quadr atic Approximation

To apply the quadratic elementsin nonparaxial case, imagineto
have matched the potential ¢ and field £, on axis at breaking

point z,, between two element intervals; to fix ideas, let z, = 0.
The two elementsare ¢; = A + Bz + C(r?/2 — 22 /4) and
b11 = A+Bz+Cr1(r?/2—2%/4), with A and B equal because
of matching for » = 0. Requiring potential continuity ¢; = ¢;r
implies

r= \/i(z —zp) O 7= \/ﬁ(zn —2) (7

These two lines (in fact cones) are the element boundaries and
separatethreeregions; inregion |11 wemay have another element
aseq. (1) with adifferent Cyy; if desired.

Matching ¢, off-axisis not possible. Discontinuity of £, is
equivalent to acharge (say positive), which implies abaancing
charge (negative) to be located at lines (7). More quantitatively,
®, be the true potentia (E; the true field), ¢ our collection of
elements (so that E = —grad¢ isa part of the electric field) and
®,. = &, — ¢ the correction (localized near eq. (7) lines) that
restores matching between elements. From Laplaceeq. AP, =
0 weindeed get:

A®, = divE @)

From eqg. (7), boundaries associated to different z,, may inter-
sectatr = (2, — zi+1)/v/2, which determines the maximum
radius of validity of our element decomposition.

Non paraxial analysisismore easily applied to the remarkable
case of the anode lens [4], a hole of radius R in a conducting
metal sheet (at &, = 0) separating a semispace z < 0 with field

E,=F, = E,—E;forz — —oo fromasemispace z > 0 with
field E, = Ey = E, + E,;for z — +oo . Our field elements
are explicitly

or = —FEsz +Eyz for 7‘*\/§sz1)>0>2:
¢y = —E,z —Eyz forr+fz R,>0<z
¢v = —Esz +(Ea/Zy) (377 — 52° — 52 ) -
elsewhere, with Z, = R, /+/2 . Here R,, is a parameter; break-
ing pointsare at +7,, . Choosing R,, = 41/2/ gives the exact
vauesfor ¢y (0,0), similarly to einzel lens [4].
From (9) we can compute the fictitious charge of (8):
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The effect of @, on particle motion can be approximately de-

scribed by a(small) transverse kick K when passing boundaries;
for example crossing 7-U boundary gives
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where r;, z; are r, z at the crossing; v; is v, at thistime; «; is
pr/p. @ thistime. Component K, is such to maintain energy
unchanged. Thiskick does not contribute to linear focusing, but
to aberations.

We can now formulate a fast tracking for the anode lens. For
convenience we project initial and final stateson z = 0. The
initial motion:

—0.75a2 + O[ai]®)  (12)

r(2) =10 +po[\/f + 2(Es — Eq)z — /f]/(Es — Eq) (12)



with f = 2F — p istherefore parameterized by (ro, po), which
would be the values of (r,p,.) a z = 0, if our particle would
propagateinaconstant field £, = F; uptothere. From (12) and
boundary eq. r — /22 = Zy, crossing values r;, z; can be easily
determined. After crossing we have p; = p,.(z;) = po + K,
with the kick (11). Motion follows eg. (2) up to crossing with
U-V boundary, at z = z,; z, isdetermined by

2o = Zp — [% cos (20, 2;) + % sin ¥(zo, zz)} (13)

which can be solved iteratively. A good starting value for ¢ is
7/)(va _Zp) =
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withg = 2HSE,/Z,, . Find vaueof p, isp,.(2}) = p, + K,
where the second kick is given by eq. (11), with r; replaced by
r, (and similar replacement for z; p; «; ).

Remarks on Programming

Asageneral remark, programs become moreinvolved with their
size; in our opinion, no recipe can guarantee order and clarity
(and absence of error). Itisthen natural to break a program into
several parts, mainly a“physics part” [5], where formula as (1)-
(14) are coded as plainly as possible, and an “interpreter”, ul-
timately relating with numbers and graphics; for example, as
COSY and FOXY (interpreting COSY to Fortran [5]). Our try
in this direction is the use of an external interpreter, at present
Mathematica [2]; advantages of this approach are more evident
at the beginning (as now), when the physics codeis small enough
to make errors unlikely; and reformulation is possible.

A Mathematica applicative program (code in brief) con-
sists of definition of transformation of symbols, with pos-
sibility of delaying or conditioning their execution: amost
any kind of programming style is possible. It is probable
that object programming, implemented by “UpSetDelayed” [2],
will be a fairly good recipe to order information about the
severa treated objects: dipoles, regions of einzel lenses or
of accelerating tubes, drifts. At present, a traditional style
was used: an element is a list, including the element name,
kind of approximation used, and parameters. For exam-
ple, {dipolex,fringe,R, ¢, o, 3,n, D, I5(in), I (out) } represents
H.Enge'smodel of dipole[4]. Simbols“matrix2” and “matrix3”
represent actionson (x, p,.) phase-space and (x, p,., §) spacere-
spectively. An einzel lensis converted into a sequence of seven
lists. A beamlineisalist of lists, on which atraditional loop dis-
tributes the action of “matrix3”. Operation on lists may be more
concisely donewithin-built symbols“ Thread” and “Map”, inan
advanced style. Graphics rendering was very flexible and satis-
fying. We plan to merge fitting of elements to einzel into some
post-processor of Poisson equation numerical solvers.

Simulation Results

Let (Va, V3, Vy) bethe voltages of the three einzel lenses, V; be
the source voltage and —V,, be the linac voltage, referenced to

platform. Fig. 3a) was computed for a beam of He?T, setting
Vi = 9kV,(i.e. E = eV; = 18 keV), V5 = 3.45 kV for
thefirst einzel and optimizing (Vs, V4, V,) = (7,5.65,67) kV; a
6V, = 10 V perturbation was added. Simulation for Ar'4* and
U238+ beams proved even better transport, provided that |atter
voltages (and intermediate waists) are changed: (V3, V4, V) =
(0,0,99.6) kV and (0, 6.3, 314) kV respectively . Fig 3b) shows
that also aberration can be reproduced by PQA, in fairly good
agreement with RungeK utta computations.
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Figure 3: a) Paraxial ray r versus z (in m) for the ECR
line; 3b) Focal distance/R versus ro/R for anode lens (dots:
RungeKutta), when £y = 0 and E2 = 0.4E/(eR).
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