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Abstract

An analytical description of the electromagnetic field in a peri-
odically disk-loaded circular waveguideisgiven. Thefieldisex-
pressed in terms of the waveguide modes. The main advantage
of this approach is that each mode matches the boundary con-
ditions in the empty waveguide. These modes have convenient
orhogonality properties. First, asingle diaphragm in the waveg-
uideisconsidered and thereflection problem arising from onein-
cident waveguide mode is solved with the mode-matching tech-
nique. Then amatrix eigenvalue equation isderived for the peri-
odically loaded waveguide. The solution of this equation yields
the dispersion curve for the structure and leads to the full field
description for a given operating mode of the accelerator.

TMy,, modes of a circular waveguide

A circular waveguide of radius b, centered around the z-axisis
considered. For the acceleration of particles in the disk-loaded
waveguide, only the transverse magnetic (7°M) modes of the
electromagnetic field are of interest. A time dependence of et
and a z dependence of e'~* is assumed and substituted into
Maxwell’s equations. The axialy symmetric T'M,,, mode so-
lutions are;
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For the nth mode, the z-component of theelectricfieldise.,,, the
radial electric field- and azimuthal magnetic field components
aree,,, and h, respectively. The wave admittance Y,, = i;o:’
and «, isthe nth root of the Bessel function Jy(z). The func-

tions ¢,, defined in equation (2) are orthonormal:
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The mode-matching technique discussed in the next section
makes use of this orthonormality. For linear travelling wave ac-
celerating structuresit iscustomary to choosetheradiusb and the
frequency w in such away that only the propagation constant I'y
isimaginary. All other {T",,} are real and represent attenuating
modes.
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Reflection from a single diaphragm

Inthecircular waveguide of radiusb, aninfinitely thin diaphragm
with acircular aperture of radiusa isplaced at z = 0, seeFig. 1.
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Figure 1: reflection at a diaphragm

The coefficients of the incident modes are a;,,, SO a general
incident field is given by:
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Here, the reflection problem is solved for one incident propa
gating mode: a;; = 1 and al other a;,, are zero. At the di-
aphragm, there will be an infinite number of reflected and trans-
mitted modes with coefficients a,., and a/.,,, respectively, be-
cause at z = 0 alinear combination of al the modesis needed
to satisfy the boundary conditions at the diaphragm. The total
radial electric field £, and azimuthal magnetic field H,, are:
For z < 0:
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For z > 0:
E. = Z al, dme 1, (9)
m=1

Hl, =Y Yo, ¢me "™ (10)
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By using the boundary condition £, = E!. = 0 at thediaphragm
for a < r < b and the continuity of the tangential field com-
ponents in the aperture (: = 0): £, = Ej and H, = H]



for 0 < r < a, amatrix equation can be derived, whose so-
lution yieldsthe coefficients a,., and a..,,,. Inthe derivation, the
orthonormality of the ¢,, functionsis used. This procedure is
known as the mode-matching technique, see Masterman [1].
To obtain a matrix equation of finite size, the series of reflected
and transmitted modes have to be truncated; therefore only afi-
nite number of coefficients are calculated. Once the coefficients
arm andal., arefound, thetotal field can be calculated at every
position in the waveguide. The most important coefficients are
a,1 and a.;. These are better known as the reflection coefficient
R and transmission coefficient T'. The coefficientsarein general
complex numbers, and as ameasure for R, the susceptance B is
defined as:
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B is areal-valued quantity [2]. The susceptance B has been
calculated as afunction of the frequency w, seeFig. 2. The solid
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Figure 2: The susceptance as a function of the frequency, using
b=39mmanda = 10 mm.

line is calculated by using the mode-matching technique and
the dashed line represents an approximation for the susceptance
given by an analytical formula derived with the small-aperture
theory [3]:
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where ik = T';. This formula was derived by assuming that
the aperture diameter issmall compared to the guide wavel ength
Ay = 2F. Calculations for smaller aperture radii show an even
better agreement between the mode-matching solution and the
approximation formula[2].

Theperiodic structure

In Fig. 3, a section of an infinitely long periodic structure is
shown. The structure consists of an empty waveguide with ra-
dius b, containing diaphragms with aperture radius a, equally
spaced at a distance d. It is assumed that the decaying modes
excited at the diaphragms decrease to a negligible value at the

neighbouring diaphragms and that only the reflected and trans-
mitted propagating mode is of importance [2]. Once the coeffi-
cients for the back and forth propagating modes are found, the
coefficients of the decaying modes can be calculated from the
single-diaphragm theory discussed in the previous section.
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Figure 3: A section of theinfinitely long periodic strucure.

The radial electric field of the propagating modesis:
For —d <z <0:

E} = a\gre” ™ 4 b gy (13)

ForO0 <z < d:
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Similar equations can be found for the azimuthal magnetic field.
In the expression for £}, the term a/ ¢,e~"** represents the
field of the mode propagating in the positive z-direction. When
a’ e~ "% isseen as an effective coefficient for thismode, the coef-
ficient at the diaphragm (> = 0) isa}, seeFig. 3. The coefficient
at z = — ¢ iscaled a; andisgiven by:
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The other coefficients are defined in a similar way. The coeffi-
cients ¢} and b arelinked to a4, and b in the following way:

Rby + Ta’,
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By using equations (16) and (17) together with equation (15) and

similar equationsfor the other coefficients, atransfer matrix can
be found which connects the coefficients a; and b, at z = — ¢
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with the coefficients a; and b, at z = ¢:
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The Floquet theorem, see Collin [3], links the fields at position
z = —4 tothefields at position z = &:
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where 8d = ¢ isthe phase shift per cell. With this equation, a
phase velocity can be defined, because at the time wt = 3d the
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fields at z + d are the same as the fields at position z for ¢t = 0.
This gives a phase-velocity:

(20)

Up = E .
By combining equations (18) and (19), amatrix eigenval ue equa-
tion can be derived, which has the characteristic equation:

cos Bd = cos kd — g sin kd. (2D
With B the susceptance. From equation (21) it can be observed
that the phase shift per cell ¢ = (3d can aso be negative, which
yieldsasolution for wavestravelling in the negative z-direction.
Since B has been calculated as a function of w and k is also
known as a function of w from equation (4), the phase shift per
cell ¢ can be calculated as a function of w, see Fig. 4. Thisfig-
ure was made using the parameters of the periodic structure of a
10 MeV linear travelling-wave el ectron accel erator with an oper-
ationmode ¢ = 2. From Fig. 4, thefrequency of this 2 mode
can be deduced. Once the frequency has been found, the eigen-
value problem can be solved and the coefficients of the propagat-
ing modesare obtained. With these, the coefficients of thedecay-
ing modes can be calculated by using the single diaphragm the-
ory. For aphase shift of %w per cell, three cellsare needed for the
field description. Figure 5 shows the total longitudinal electric
field on the z-axis in the three cells. The dashed line represents
thefield calculated from the Fourier coefficients of the %w mode
given by the computercode Superfish [4].
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Figure 4: The frequency w as afunction of the phase shift ¢ per
cell, using a ~ 10 mm, b =~ 39 mm and d = 33.33 mm.

Concluding remarks

The empty waveguide modes are auseful tool for the description
of the electromagnetic field in periodically disk-loaded waveg-
uides. With the mode-matching technique, the reflection of
waves from an infinitely thin diaphragm is described accurately.
The dispersion curve of the infinitely long periodic structure
can be calculated and the cal cul ated fields for a given frequency
w agree reasonably well with the fields calulated by Superfish.
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Figure 5: The E.-field on the axis for the 27 mode. The solid
line is the field calculated with the theory and the dashed line
represents the field calculated with Superfish.

To obtain more accurate results, the theory could be extended to
include diaphragms of finite thickness [2] [5] and also to a de-
scription of aperiodic structures [6], which is important for the
design of low-energy travelling-wave linacs.
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